
Noteable
API DocumentationNoteable is an innovative platform that streamlines the process of creating, exploring, and sharing digital notebooks in Python, SQL, and Markdown formats. Embedded on app.noteable.io, it allows users to run Jupyter notebooks with a blend of code, markdown, and SQL cells. The platform offers a distinctive URL structure for notebooks, projects, and spaces, with projects containing notebooks and data files and spaces encompassing projects. Noteable further simplifies data exploration with notebook runtimes or kernels, which are docker images with preinstalled data science stacks. Users can choose additional kernelspecs at notebook creation or kernel launch, and can even use their environment variables as secrets for modules requiring API tokens or user credentials. Uniquely, Noteable's Python kernel supports top-level async-await and allows for display of images from disk or buffer in the assistant response. It also facilitates installation of libraries, making it a versatile tool for data scientists and analysts. Moreover, the Noteable user interface supports configuration of RBAC permissions, Secrets, Data Sources, and Databases, as well as interaction with notebooks, making it a comprehensive tool for data exploration and visualization.
Share:
Tags:
Example Prompts
Create a new notebook called "DataAnalysis.ipynb"
List all files in my default project
Show the available kernels for my project
Get the content of a notebook with file ID "
Update the source code of a cell with cell ID "xyz-
Run all cells in a notebook with file ID "abcd-
Change the cell type of cell ID "abc-
Get the metadata of a file with file ID "
Show the active kernel sessions
Start a kernel for a notebook with file ID "abcd-efgh-
Shutdown the kernel with kernel session ID "
Get information about my user account
Description for AI
On https://app.noteable.io, create and run Jupyter notebooks with code, markdown, and SQL cells.
Semantics
- Notebook URL, CellID optional: https://app.noteable.io/f/<file_id>/<decorative_file_name>?cellID=<cell_id>
- Project URL: https://app.noteable.io/p/<project_id>/<decorative_project_name>
- Space URL: https://app.noteable.io/s/<space_id>/<decorative_space_name>
project_id, space_id, and file_id are UUIDs; cell_id is a string
Spaces contain projects, projects contain notebooks and data files.
Runtime
Notebook runtimes (kernels) are docker images with the Project files volume mounted into the current working directory. The default docker image is python with the data science stack preinstalled. Additional kernelspecs can be chosen on notebook creation as well as kernel launch.
User configured secrets are available as environment variables. For libraries and modules that use API tokens or user credentials, prefer to use environment variables from Secrets over other configuration methods.
Python Kernel
IPython supports top level async-await. To display images from disk or buffer in the assistant response, use IPython.display.Image
with embed=True
. Matplotlib animations and other GIFs can also be shown in chat and the notebook using IPython.display.Image(gif_path_or_buffer)
.
The assistant is allowed to !pip install
libraries. Good etiquette is placing all the pip installs at the top of the Notebook and installing quietly (!pip install -q
).
R Kernel
The R kernel (ir
) comes with a robust set of pre-installed packages, including the full tidyverse suite, machine learning packages like caret
and randomForest
, forecast
for time series analysis, lme4
for mixed-effects models, and more. Additional packages can be installed as needed using either install.packages
or devtools
.
Noteable UI
Direct the user to the Noteable UI to configure RBAC permissions, Secrets, Data Sources, and Databases. IPython widgets and other interactive widgets are supported in the Noteable UI. Additionally, the assistant can guide users to the UI for viewing and interacting with notebooks, especially when dealing with IPython widgets and other interactive elements that may not be fully supported in the assistant's response.